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Abstract

In this article we classify higher-order gauge invariant Lagrangian densities on the bundle of connections of a principal G-bundle
π : P → M , in the case where the structure group is abelian. Also we show the strong obstruction for an analogous classification
in the noncommutative case.
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1. Introduction

Yang and Mills [15] interpreted the exchange of mesons in the strong nuclear force supposing that the Lagrangian
for the nucleon will have SU (2) as a local symmetry group. This Lagrangian L is constructed using covariant
derivatives associated with a connection for the given structure group SU (2) (whose components as a function of
a basis of the Lie algebra are the Yang–Mills fields and mediate the force between nucleons), to construct the field
strength, which is none other than the curvature of the vector bundle. Later on, Utiyama [14] generalized this work
proving that any given gauge invariant action density defined on the 1-jet space of connections of a principal fiber
bundle must be an ad-invariant function of the curvature. While Utiyama’s arguments are local in nature and rely on
a trivial bundle, global formulations and geometric interpretations for nontrivial bundles have subsequently appeared
in the literature. See: Garcia [9], Bleecker [3] and Eck [6]; Betounes [1] and Grassini [10] for the case of interaction
of a gauge and a particle field; Betounes [2] for Yang–Mills Lagrangians coupled with matter fields; Grassini [11] for
an interpretation of the Utiyama theory as a geometrical gauge theory and Bruzzo [4] for the invariant Lagrangians
associated with global actions of supergauge transformations.
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The geometric version of the Utiyama theorem states that given a principal G-bundle π : P → M with p : C → M
as bundle of connections, a Lagrangian defined on the 1-jet level L : J 1(C) → R is invariant under the natural
representation of the gauge algebra of P , if and only if L factors through the curvature mapping Ω (which sends each
connection w onto its curvature Ωw = dw +

1
2 [w, w]) as follows: L = L ◦ Ω , where L is a function defined on the

curvature bundle K → M , which in turn must be invariant under the gauge algebra representation on K.
Lagrangian densities are a very special kind of differential forms on C. They are horizontal and of degree equal to

the dimension of M . Of course, their importance lies in the fact that such forms define variational problems on the
fibred manifold p : C → M , and gauge invariance for Lagrangian density provides a natural symmetry condition for
the variational problem under consideration. Moreover, probably the simplest method of obtaining Euler–Lagrangian
equations which are invariant under gauge transformations is to start with a gauge invariant Lagrangian. In any case,
we know that gauge invariant Lagrangians produce gauge invariant field equations. In this way due the importance
of this notion in gauge theories we consider here the problem of gauge invariance for higher-order Lagrangians. So
far, this classification problem has only been solved in the case of the electromagnetic field theory [13], that is, in the
mathematical context, the case in which we consider the trivial U (1)-bundle over a spacetime M . Herein we solve this
problem for any principal bundle whose structure group is an abelian Lie group, and we study the type of obstruction
that prevents an analogous classification for any nonabelian Lie group.

As an open problem, we propose to study conditions for obtaining arbitrary order gauge invariant Lagrangians for
particles interacting with external gauge fields.

2. Gauge algebra, bundle of connections and automorphic forms

Given a principal G-bundle π : P → M , let us denote by Gau(P) the group of the G-invariant diffeomorphisms
of P which stabilize every G-orbit, i.e. ϕ is a diffeomorphism ϕ : P → P such that ϕ(ug) = ϕ(u)g, ∀g ∈ G, in such
a way that u and ϕ(u) belong to the same G-orbit ∀u ∈ P .

Let us denote with V (P) ⊂ T (P) the vertical bundle of the fibration. A description of V (P) becomes from the
trivialization P × G ∼= V (P) given by (u, A) 7−→ A∗

u , where A∗ is the fundamental vector field on P associated with
the element A of G, the Lie algebra of G. A vector field X ∈ V (P) is said to be G-invariant if (Rg)∗ X = X, ∀g ∈ G.
If ft is the flow of X , then X is G-invariant if and only if ft ∈ Gau(P), ∀t ∈ R. We shall denote by gau(P) the Lie
algebra of all π -vertical G-invariant vector fields on P , which is called the gauge algebra of P .

Definition 1. Let Kr (P,G) be the fibred manifold over M consisting of the G-valued r -skew-forms on P such that
(a) For X1, . . . , Xr ∈ Tp P we have Φ((Rg)∗ X1, . . . , (Rg)∗ Xr ) = ad(g−1) · Φ(X1, . . . , Xr ).
(b) If one of X1, . . . , Xr is π -vertical, then Φ(X1, . . . , Xr ) = 0.

Kr (P,G) will be called the space of r -automorphic forms on P . In particular K0(P,G) will be called the space of
automorphic functions, i.e., maps Φ : P → G such that Φ(pg) = ad(g−1)Φ(p), and K2(P,G), which we shall
denote simply as K, will be called the curvature bundle associated with the given principal fibration.

Definition 2. Given D ∈ gau(P) we define the automorphic function τD ∈ K0(P,G) as follows: τD(p) is the unique
A ∈ G such that A∗

p is equal to Dp ∈ Tp(P).

The automorphic character of τD is then guaranteed by the fact that for each g ∈ G, (Rg)∗ A∗ is the fundamental
vector field corresponding to ad(g−1)A ∈ G (cf. [7]).

If we define exp : K0(P,G) → Gau(P) as

exp(τ )(p) = p · exp(τ (p)),

then for each D ∈ gau(P) its flow can be written as ft (p) = p · exp(tτ D)(p).
We define the bundle of connections p : C → M of the principal bundle π : P → M as the subbundle

C ⊂ ∧
1(T P,G) formed by the G-valued 1-forms w : T P → G such that w(A∗) = A, ∀A ∈ G, and

(Rg)
∗w = ad(g−1)w, ∀g ∈ G. If w, w′

∈ C, then trivially w − w′
∈ K1(P,G). Hence C is an affine bundle

modeled over the vector bundle K1(P,G). A connection Γ on P is a global section σΓ of p : C → M . Also we shall
denote by wΓ the G-valued 1-form on P defined by Γ .

Given a connection Γ on P , the horizontal lift of a vector field X on M is the unique horizontal vector field X∗ on
P (that is wΓ (X∗) = 0) which is G-invariant and such that π∗(X∗) = X .



F. Etayo Gordejuela et al. / Journal of Geometry and Physics 57 (2007) 1089–1097 1091

Definition 3. If we fix a connection form w on P , we define a map between fibred spaces of automorphic forms

dw
: Kr (P,G) → Kr+1(P,G), (r ≥ 0)

as follows: dwΦ(X1, . . . , Xr+1) = dΦ(Xh
1 , . . . , Xh

r+1), where Xh
i denotes the horizontal component of X i with

respect to w.

Proposition 4. For Φ ∈ Kr (P,G) it holds that dwΦ = dΦ + [w,Φ].

Proof. We shall only prove the case in which Φ ∈ K1(P,G). The general case is in essence identical to this one.
Then we shall prove dwΦ(X, Y ) = dΦ(X, Y ) + [w(X),Φ(Y )] − [w(Y ),Φ(X)] for any tangent vectors X, Y ∈ Tp P .
Since both sides of this equality are bilinear in X and Y , it is sufficient to consider the different situations in which
X and Y are either horizontal or vertical. The only nontrivial case is the one where X is vertical and Y is horizontal.
We can suppose that X = A∗ at p, where A ∈ G, and that Y is a horizontal lift of a vector field on M . Then if
ft (p) = p · exp(t A) is the 1-parameter subgroup of G generated by A, we have

[A∗, Y ] =
d
dt

∣∣∣∣
t=0

( f −1
t )∗Y = 0

since Y is Rg-invariant for every g ∈ G. It is clear that dwΦ(X, Y ) = 0, and we shall show that the right hand side of
the equality vanishes. Now

dΦ(A∗, Y ) = A∗Φ(Y ) − YΦ(A∗) − Φ([A∗, Y ]) = A∗Φ(Y )

and [w,Φ](A∗, Y ) = [w(A∗),Φ(Y )] − [w(Y ),Φ(A∗)] = [A,Φ(Y )]. But A∗Φ(Y ) = −[A,Φ(Y )] by the very
definition of the Lie derivative of functions and vector fields. �

Definition 5. Given a connection Γ on P , with connection form w, we define the curvature of Γ as Ωw = dww. Then
it holds that Ωw = dw +

1
2 [w, w] and Ωw ∈ K2(P,G). (Note that w 6∈ K1(P,G).)

Proposition 6. If Γ is a connection on P defined by its connection form w and D ∈ gau(P) is the generator of the
flow ft (p) = p · exp(tτD(p)) = p · ϕt (p) (ϕt : P → G), then

(i) L Dw = dwτD = dτD + [w, τD]

(ii) L DΩw = −[τD,Ωw]

where L D stands for the Lie derivative with respect to D.

Proof. (i) It suffices to see that L Dw and dwτD coincide when applied to any vector field X on P . If X is vertical, we
may suppose X = A∗; then since f ∗

t w is also a connection form we have

L Dw(X) =
d
dt

∣∣∣∣
t=0

f ∗
t w(A∗) = 0.

On the other hand, dwτD(A∗) = 0, since due to the Proposition 4, dwτD ∈ K1(P,G).
If X is horizontal then (dwτD)(X) = (dτD)(X) = XτD . On the other hand by the Leibniz rule we can write

( ft )∗ X = (ϕt )∗ X + (Rϕt )∗ X , hence calling γ (s) a flow of X , we have

L Dw(X) =
d
dt

∣∣∣∣
t=0

f ∗
t w(X) =

d
dt

∣∣∣∣
t=0

(ϕt )∗ X

=
∂

∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

ϕt (γ (s)) =
∂

∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

exp(tτD(γ (s)))

=
∂

∂s

∣∣∣∣
s=0

τD(γ (s)) = XτD.

(ii) Taking into account that for a horizontal vector field X ∈ T (P), the horizontal component of ( ft )∗ X is (Rϕt )∗ X ,
the automorphic character of Ωw implies ( ft )

∗Ωw = ad(ϕ−1
t ) · Ωw, and hence

L DΩw =
d
dt

∣∣∣∣
t=0

( ft )
∗Ωw =

d
dt

∣∣∣∣
t=0

ad(exp(tτD)−1) · Ωw = −[τD,Ωw]. �
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Every vector field D ∈ gau(P) determines an element DK ∈ X (C) as follows: if ft is the flow of D, then we
define a flow ( ft )C on C by pulling back connections forms, that is: ( ft )Cw = ( ft )

∗w, w ∈ C; the corresponding
infinitesimal generator is denoted by DC . In this way, the map D 7−→ DC defines an homomorphism of real Lie
algebras whose kernel will be denoted by gau0(P):

0 → gau0(P) → gau(P) → X (C).

3. Higher-order Garcia fibration: Gauge meaning

Let q : P → C be the bundle induced by the principal bundle π : P → M on its fibre bundle of connections
p : C → M . Then P is a principal bundle over C with structural group G, such that the canonical morphism
π10 : P → P is a principal G-bundle morphism, i.e., one has the following commutative diagram:

P
π10
→ P

q ↓ ↓ π

C p
→ M

A useful construction of the bundle P is as follows. Let p1 : J 1 P → M be the 1-jet bundle of local sections
of π : P → M . The group G acts on J 1 P by ( j1

x s) · g = j1
x (Rgs). The quotient J 1 P/G exists as a fibred

differentiable manifold over M and can be identified with the bundle of connections (see [8]). Let us describe this
fact; we define a mapping q : J 1 P → C as follows: for each element j1

x s we consider the vertical differential of
s, dvs ∈ ∧

1(T P,G): if X ∈ Ts(x) P then dv
s(x)s(X), is the only element A ∈ G, such that A∗

s(x) = X − s∗π∗ X .

From the fact that the fundamental vector field associated with (Rg)∗ A, (g ∈ G, A ∈ G) is
(
ad(g−1)A

)∗
, it follows

that (Rg)
∗dvs = ad(g−1)dvs. On the other hand for each point u ∈ π−1(x), there exists a unique g ∈ G such that

u = s(x)g and we set dv
u s : Tu P → G by dv

u s = (Rg)∗ ◦ (Rg−1)∗dv
s(x)s. In this way we obtain an element of C which

depends only on j1
x s and we define q( j1

x s) = dvs. It is not difficult to prove that q is a surjective submersion whose
fibres are the orbits of G, and we have a principal G-bundle q : J 1 P → C, which we shall call the Garcia fibration [8,
9]. Furthermore there is a G-principal bundle isomorphism J 1 P = C×M P given by j1

x s → (q( j1
x s), s(x)) (see [8]).

Now we consider the r -jet bundle (r > 1)J r P −→ M of local sections of π . Our objective here will be to give a
gauge interpretation of the quotient bundles J r (P)/G.

Proposition 7. With the canonical action of G on J r (P)

( jr
x s) · g = jr

x (Rg ◦ s)

where s is a section of π and g ∈ G, the quotient manifold exists and it is endowed with a natural fibred structure
over M:

πr : J r (P)/G → M.

Proof. We must check that G acts properly discontinuously on J r (P). By the Dieudonné criterion [5] this condition
holds if and only if R = {( jr

x s, jr
x s · g); jr

x s ∈ J r (P), g ∈ G} is a closed submanifold of J r (P) × J r (P), and this is
easy to see. �

Proposition 8. The local connection associated with a section s : U → P is flat.

Proof. It suffices to take into account that the condition of being horizontal for a vector field X on s(U ) is X = s∗π∗ X ,
which is stable by Lie bracket. �

By taking jets in the submersion q : J 1(P) → C we obtain a mapping J r−1(q) : J r−1(J 1(P)) → J r−1(C) and
restricting J r−1(q) to the injection J r (P) ↪→ J r−1(J 1(P)), jr

x s 7−→ jr−1
x ( j1

x s), we can define a homomorphism of
fibred manifolds over M :

ϕr : J r (P) → J r−1(C).
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Theorem 9. For every r > 1 there exists an embedding

Φr : J r (P)/G → J r−1(C)

whose image coincides with the subbundle Cr−1 of J r−1(C) given by

Cr−1
= { jr−1

x (σΓ ) ∈ J r−1(C) : jr−2
x (ΩΓ ) = 0}.

Proof. It easily follows from the definition of the Garcia fibration q : J 1(P) → C that the definition of Φr makes sense
and that it is injective. Now by Proposition 8 it is clear that ImΦr ⊆ Cr−1. For the converse we shall introduce some
notation. Assume that (U ; x1, . . . xn) is an open coordinate subset of M over which P is trivial: π−1(U ) = U × G.
Let {A1, . . . , Am} be a basis of the Lie algebra G of G. We have a coordinate system (x j ; zi j ), 1 ≤ i ≤ m, 1 ≤ j ≤ n,
in C given by the formula:

σΓ (∂/∂x j ) = ∂/∂x j +

∑
i

(zi j ◦ σΓ ) Ãi

where Ãi is the G-invariant vector field on π−1(U ) induced by the 1-parameter group τ i
(x,σ )(t) = [x, exp(t Ai )σ ].

In what follows we shall refer to the coordinate systems (x j , yi
(α)), (x j , zi j

(α)) induced by (x j , yi ), (x j , zi j ) on
J r (P), J r (C) respectively.

Given a section s : U → P , we set si = yi ◦ s, 1 ≤ i ≤ m. As a simple calculation shows, we have

dvs =

∑
h,i

ahi

(
dyi −

∑
j

∂si

∂x j
dx j

)
⊗ Ãh

where (ahi ) is an invertible matrix in a neighbourhood of the origin. In this way the equations of the projection
q : J 1(P) → C are the following:

zhj ◦ q =

m∑
i=1

ahi yi
( j), 1 ≤ h ≤ m; 1 ≤ j ≤ n.

Hence,

(zhj
α ◦ Φr )( jr

x s) =
∂ |α|

∂xα

(∑
i

(ahi s)
∂si

∂x j

)
(x),

α ∈ N; |α| ≤ r − 1; 1 ≤ h, i ≤ m; 1 ≤ j ≤ n, and, by using the Leibniz formula, we obtain

(zhj
α ◦ Φr )( jr

x s) =

∑
i

∑
β≤α

(
α

β

)
Dα−β

x (ahi s)(Dβ+( j)
x si ),

α, β ∈ N; |α| ≤ r − 1; 1 ≤ h, i ≤ m; 1 ≤ j ≤ n, where we have set Dα
= ∂ |α|/∂xα . Now, let us consider

a point jr−1
x (σΓ ) ∈ J r−1(C), so that jr−2

x (ΩΓ ) = 0. We define a point jr
x s ∈ J r (P) by giving its components

yh
α( jr

x s) = Dα
x sh, |α| ≤ r; 1 ≤ h ≤ m. To do so, we proceed by recurrence on |α|. Set sh(x) = 0, 1 ≤ h ≤ m.

Assume that Da
x sh has been defined for every |α| < l, 1 ≤ l ≤ r − 1, in such a way that the following formulas hold:∑

i

∑
b≤a

(
α

β

)
Dα−β

x (ahi ◦ s)(Dβ+( j)
x si ) = zhj

a ( jr−1
x (σΓ ))

for all |α| ≤ l − 1; 1 ≤ h, i, ≤ m; 1 ≤ j ≤ n. Let α be a multi-index of order l and let us consider an index j such
that α j > 0. We define

Dα
x sh = zhj

α−( j)( jr−1
x (σΓ )) −

∑
i

∑
β<α−( j)

(
α − ( j)

β

)
Dα−( j)−β

x (ahj ◦ s)(Dβ+( j)
x si ). (a)
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It is obvious that (a) also holds for the indices α − ( j), j . Let k be another index such that αk > 0. Thus we can write
α = ( jk) + s. We only need to prove that (a) also holds for the couple α − (k), k; or, in other words,

zhk
σ+( j)( jr−1

x (σΓ )) − zhj
σ+(k)( jr−1

x (σΓ )) =

∑
i

∑
β<σ+(k)

(
σ + (k)

β

)
Dσ+(k)−β

x (ahi ◦ σ)(Dβ+( j)
x si )

−

∑
i

∑
β<σ+(k)

(
σ + ( j)

β

)
Dσ+( j)−β

x (ahi ◦ σ)(Dβ+(k)
x si ). (b)

Moreover, the condition jr−2
x (ΩΓ ) = 0 means

zhk
σ+( j)( jr−1

x (σΓ )) − zhj
σ+(k)( jr−1

x (σΓ )) =

∑
β≤σ

∑
i,t

(
σ

β

)
ch

itλ
t j
σ−βλik

β ,

where ch
it are the structure constants of G relative to the basis chosen. Hence, (b) is equivalent to the following:

∑
β≤σ

∑
i,t

(
σ

β

)
ch

it Dσ−β
x

(∑
u

(atu ◦ s)
∂su

∂x j

)
Dβ

x

(∑
v

(aiv ◦ s)
∂sv

∂xk

)

=

∑
i

∑
β<σ+(k)

(
σ + (k)

β

)
Dσ+(k)−β

x (ahi ◦ σ)(Dβ+( j)
x si )

−

∑
i

∑
β<σ+(k)

(
σ + ( j)

β

)
Dσ+( j)−β

x (ahi ◦ s)(Dβ+(k)
x si ).

The left hand side of the above equation is equal to∑
i,t,u,v

ch
it Dσ

x

(
(atu ◦ s)(aiv ◦ s)

∂su

∂x j

∂sv

∂xk

)
,

whereas its right hand side becomes∑
i

Dσ+(k)
x

(
(ahi ◦ s)

∂si

∂x j

)
−

∑
i

Dσ+( j)
x

(
(ahi ◦ s)

∂si

∂xk

)
=

∑
u,v

Dσ
x

(
∂ahu

∂yv

◦ s −
∂ahv

∂yu
◦ s

)
∂su

∂x j

∂sv

∂xk
.

Moreover, it holds that ∂ahu/∂yv − ∂ahv/∂yu =
∑

i,t ch
it a

tuaiv , showing that the two sides coincide, thus completing
the theorem proof. �

4. Higher-order gauge invariant Lagrangians

Lemma 10. (1) Every element f ∈ Gau(P) induces, by pulling back 2-forms, an isomorphism of fibred manifolds
over M

f (r)
: J r (K) → J r (K), (r ≥ 0).

The image of Gau(P) under this representation will be denoted Gau(r)

K (P).
(2) Every element g ∈ G induces an isomorphism

g(r)
: J r (K) → J r (K)

given by g(r)( jr
x Φ) = jr

x (ad(g−1) · Φ), which provides a representation of the Lie group G denoted as G(r)

K .
(3) Every element f ∈ Gau(P) induces, pulling back connection forms, an isomorphism of fibred manifolds over

M

f (r)
: J r (C) → J r (C).

The corresponding image of Gau(P) under this representation will be denoted as Gau(r)

C (P).
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Proof. (1) For Φ ∈ K and f ∈ Gau(P) we have (Rg)
∗ f ∗(Φ) = f ∗(Rg)

∗(Φ) = f ∗
(
ad(g−1) · Φ

)
= ad(g−1)· f ∗ (Φ).

On the other hand, if A∗ is a fundamental vector field on P , then it is easy to see that f∗(A∗) = A∗. Thus f ∗(Φ) is,
like Φ, null whenever one of its arguments is vertical. In this way we have an isomorphism f ∗

: K → K. According
to Goldschmidt [12] there is an r th prolongation f (r)

: J r (K) → J r (K) which is also an isomorphism of fibred
manifolds over X .

(2) and (3) are proved in a similar way. �

Lemma 11. The orbits by the actions of the groups Gau(r)

K (P) and G(r)

K on J r (K) coincide.

Proof. If f ∈ Gau(P) is of the form f (p) = pϕ(p) with ϕ : P → G, and Φ ∈ K , by the proof of Proposition 6 we
have f ∗(Φ) = ad(ϕ−1)·Φ. In this way, our statement follows since ϕ ranges over all G as f ranges over Gau(P). �

Definition 12. We shall define an r th-order Lagrangian on the fibred of connections p : C → M as an arbitrary
differentiable function L : J r (C) → R. Such a Lagrangian is said to be gauge invariant if L( f (r) jr

x (σ )) = L( jr
x (σ ))

for all f (r)
∈ Gau(r)

C (P).
In the same way an (r − 1)th gauge invariant curvature Lagrangian is a differentiable function L : J r−1(K) → R,

verifying L(g(r) jr−1
x (Ω)) = L( jr−1

x (Ω)) for all g(r)
∈ G(r)

K .

We define a map:

Ω : J 1(C) → K,

called the curvature mapping, assigning to the 1-jet j1
x (σΓ ) of a local connection Γ , its curvature j0

x (ΩΓ ).
By applying the J r−1 functor to this map and restricting to the holonomic subbundle, we define an homomorphism

of vector bundles

J r−1
Ω : J r (C) → J r−1(K)

as being the composition J r (C) ↪→ J r−1(J 1(C))
J r−1
Ω
→ J r−1(K).

Theorem 13. Given a principal G-bundle π : P → M, where G is any commutative Lie group, an rth-order
Lagrangian defined on the fibred manifold of connections L : J r (C) → R is gauge invariant if and only there exists
an (r − 1)th-order curvature Lagrangian L which is G(r)

K -invariant and a factorization through the (r − 1)th-order
curvature mapping,1

L = L ◦ J r−1
Ω .

Proof. In order to prove the theorem, it suffices to see that the orbit through the gauge group of a point jr
x (σΓ ) ∈ J r (C)

coincides with the inverse image through J r−1
Ω of the gauge orbit of jr−1

x (ΩΓ ) in J r−1(K). That is, if we denote as
O( jr

x (σΓ )) and O( jr−1
x (ΩΓ )) such orbits, taking into account that O( jr−1

x (ΩΓ )) = { jr−1
x (ΩΓ )}, we shall therefore

prove

O( jr
x (σΓ )) = (J r−1

Ω )−1( jr−1
x (ΩΓ )). (c)

In this way, with the equality between these two gauge spaces, we can correctly define the Lagrangian L:
J r−1(K) → R by the formula L( jr−1

x (ΩΓ )) = L( jr
x (σΓ )). In fact, if we choose another connection Γ ′ such that

jr−1
x (ΩΓ ′) = jr−1

x (ΩΓ ), then

jr
x (σΓ ′) ∈ (J r−1

Ω )−1( jr−1
x (ΩΓ )),

1 We have stated the theorem in the most general possible way, in order to show the similarity with the classical Utiyama theorem (true without
the commutative hypothesis only for r = 1). In our case, in which the structure group G is abelian, due to the adjoint representation being trivial,
there are no gauge orbits in K, and hence the condition of gauge invariance on L is superfluous. In this way the theorem simply states that the
Lagrangian L is invariant if and only if it factors through the curvature mapping, which in this case is nothing but the exterior differential.
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and by virtue of the hypothesis, there exists a gauge transformation f ∈ Gau(P), such that jr
x (σΓ ′) = f (r) jr

x (σΓ ),
with which, taking into account the gauge invariance of L, we conclude that L( jr−1

x (ΩΓ )) does not depend on the
chosen representative.

Therefore, in order to prove the equality (c), let us first see that the left hand side is included in the right hand side,
as a consequence of the curvature mapping being gauge equivariant:

J r−1
Ω ( f (r)

C jr
x (σΓ )) = J r−1

Ω ( jr
x ( f ∗σΓ )) = f (r−1)

K jr−1
x (Ω) = J r−1

Ω ( jr
x (σΓ )).

Now we compute dim(O( jr
x (σΓ ))). If we take a local connection form wΓ associated with the connection Γ and

ft (p) = p exp(t · τD(p)) ∈ Gau(P), then a tangent vector of O( jr
x (σΓ )) at jr

x (σΓ ) is given by jr
x

(
d
dt

∣∣∣
t=0

f ∗
t wΓ

)
,

but

jr
x

(
d
dt

∣∣∣∣
t=0

f ∗
t wΓ

)
= jr

x (L DwΓ ) = jr
x (dwΓ τD) = jr

x (dτD).

Now, let U be an open set on which P is trivial and coordinated by {x1, . . . , xn} (n = dim X) and let {A1, . . . , Am}

be a basis of G. Let us denote by {τα
D} the mesonic components of τD in this basis. Then jr

x (dτD) is determined by the
parameters

∂ |I |τα
D

∂xi1 · · · ∂xi p

(x), I = (i1, . . . , i p), 0 < p ≤ r + 1.

Thus we get dim(O( jr
x (σΓ ))) = m

(
n +

(
n+1

2

)
+ · · · +

(
n+r
r+1

))
. We shall call this combinatorial number Dr+1.

To compute dim(J r−1
Ω )−1( jr−1

x (ΩΓ )), we consider the following exact sequence, trivially deduced from
Theorem 9:

0 → J r+1(P)/G → J r (C) → Im(J r−1
Ω ) → 0, (r ≥ 2).

An easy computation proves that the dimension of the fiber of the bundle J r+1(P)/G over x ∈ M is Dr+1, which
easily implies dim(J r−1

Ω )−1( jr−1
x (ΩΓ )) = Dr+1.

In this way, O( jr
x (σΓ )) is an open subset of (J r−1

Ω )−1(O( jr−1
x (ΩΓ ))). Since the orbits are either disjoint or

coincident, if we prove that (J r−1
Ω )−1( jr−1

x (ΩΓ )) is connected then the equality (c) between gauge spaces is
established.

We shall proceed by induction on r . In order to describe j1
x (σΓ ) we consider the local connection form wΓ =∑m

α=1 wα
⊗ Aα . Then j1

x (σΓ ) is determined by the values on x of the functions wα
i = wα( ∂

∂xi
) and wα

i j =
∂wα

i
∂x j

.

Analogously, j0
x (ΩΓ ) is described by the values on x of Ωα

i j = Ωα( ∂
∂xi

, ∂
∂x j

) where Ω =
∑m

α=1 Ωα
⊗ Aα .

Thus, given the components {Ωi j } of j0
x (ΩΓ ) we must prove that the set of 1-jets j1

x (σΓ ) = j1
x (wΓ ) = {wα

i j , w
α
i }

which verify

J 0
Ω ( j1

x (σΓ )) = j0
x (ΩΓ ), that is: wα

i j − wα
j i = Ωα

i j (d)

is a connected subset of Rm(n+n2). To see this, we take first the particular solution j1
x (σΓ ) = (wα

i j =
1
2Ωα

i j , w
α
i = 0).

Given any other solution j1
x (σ ′

Γ ) = {w′α
i j , w

′α
i } verifying the curvature equation (d), we can perform a deformation of

the first in the second by writing

w̃α
i (t) = (1 − t)w′α

i , w̃α
i j (t) = (1 − t)w′α

i j −
1
2

tΩα
i j .

Thus, there is a path linking any two 1-jets of connections in
(
J 0
Ω

)−1
( j0

x (ΩΓ )), proving the connectedness of this
space.

The induction process is applied taking into account the following statement (which is easy to prove): Let C be
a set of functions defined on a neighbourhood of a point x0 of Rk . If D = { f (x0) : f ∈ C} is a subset of RN and
D′

= { f ′(x0) : f ∈ C} is a subset of RM , then the path-connected character of D implies the connectedness of
D′. �
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Additional Remark 14. If r > 1 and G is nonabelian, then the gauge invariant Lagrangians L : J r (C) → R are not
classifiable by the Utiyama theorem. In fact, as regards the theorem notation, we have

O( jr
x (σΓ )) ⊂ (J r−1

Ω )−1(O( jr−1
x (ΩΓ ))),

and the inclusion is always strict. To see this, we calculate first dimO( jr
x (σΓ )). If we compute again the number of

parameters on which a tangent vector at jr
x (σΓ ) ∈ O( jr

x (σΓ )) depends, we have

jr
x

(
d
dt

∣∣∣∣
t=0

f ∗
t wΓ

)
= jr

x (L DwΓ ) = jr
x (dwΓ τD) = jr

x (dτD + [τD, w]),

for the flow ft of D ∈ gau(P). Thus now, not only must we take into account the mesonic components of dτD but
also those of τD , and accordingly we get dimO( jr

x (σΓ )) = m + Dr+1. On the other hand and in order to calculate the
dimension of the gauge orbit of jr−1

x (ΩΓ ) in J r−1(K), we have

jr−1
x

(
d
dt

∣∣∣∣
t=0

f ∗
t ΩΓ

)
= jr−1

x (L DΩΓ ) = − jr−1
x ([τD,ΩΓ ]),

and then dim
(
O( jr−1

x (ΩΓ ))
)

= m + Dr−1. Since (J r−1
Ω )−1 raises in Dr+1 the dimension of any subspace in

Im(J r−1
D )x , we conclude that

dim(J r−1
Ω )−1(O( jr−1

x (ΩΓ ))) − dimO( jr
x (σΓ )) = Dr−1.

Additional Remark 15. For r = 1, due to D0 = 0, we have dim(J 0
Ω )−1(O( j0

x (ΩΓ ))) = m+D2 = dim(O( j1
x (σΓ )));

an argument on the connectedness of (J 0
Ω )−1(O( j0

x (ΩΓ ))), similar to that in our theorem, proves that in fact

O( j1
x (σΓ )) = (J 0

Ω )−1(O( j0
x (ΩΓ ))),

which provides the classical Utiyama–Yang–Mills theorem.
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